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Equivalence principle for spontaneously broken gauge 
fields with external sources 

Carlos Aragonet 
Departamento de Fisica Universidad Sim6n Bolivar, Apartado 80.659, Caracas 1080-A, 
Venezuela 

Received 8 August 1980, in fin21 form 20 November 1980 

Abstract. It is shown how to construct uniquely the gauge transformation that takes a 
spontaneously broken vector gauge system with external sources to the nearest possible 
cross section to a pure gauge field in t’Hooft’s gauge. In gravity the equivalence principle 
amounts to the existence of a privileged system of coordinates, whereas in the case of gauge 
fields the role of the (locally) inertial frames of reference is played by blind (colourless) local 
cross sections making both the gauge potentials and the symmetric traceless part of their 
derivatives vanish at a certain point. Once in the blind cross sections, propagation equations 
naturally lead us to find a quadratic condition in the field strength which measures the 
tightness of the non-abelian internal coupling. In the absence of Higgs scalars, fields 
obeying this condition are shown to belong, in general, to case 2 of the Wang-Yang 
classification. 

1. Introduction 

The equivalence principle plays a central role in the formulation and understanding of 
gravity as a physical theory. Roughly stated the principle says that curved Space-time 
can be viewed as approximately flat in a sufficiently small region. 

Locally there are frames of reference without gravity. More precisely events close 
to a certain point can be specified by normal coordinates with an origin in it such that (at 
least) the affinities vanish at this point. 

This microscopic flatness has been recently used by Bunch and Parker (1979) to 
introduce a local momentum space representation near any given point in general 
curved space-time which allowed them to study the ultraviolet divergences of, for 
instance, the Aqb4 theory on a general curved background. 

In the case of gauge vector fields, instead of local inertial frames of references we 
shall here find locally blind sections in the principal bundle based on the Minkowski 
space M4 (or in the associated Euclidean section E4 if one intends to analyse ultraviolet 
quantum properties). 

Let us remind the reader that a principal fibre bundle over Mq with group G consists, 
following Kobayashi and Nomizu (1963), of a manifold P and an action of G on P. In 
short, G acts smoothly to the right on P without fixed points and M4 is the quotient space 
of P by the equivalence relation induced by the action of G, M4 = P/G. The canonical 
projection T :  P +  M4 is also smooth and P is locally trivial, in the sense that any p E M4 
has a neighbourhood U, such that T-’( U,) is isomorphic to U, x G. The gauge 
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potentials are Lie-algebra valued functions ( A , )  defined on M4, and it is always possible 
to consider A,(x)  as the components of a connection form on the trivial principal fibre 
bundle P = M 4 X G ,  associated to a certain section U (Daniel and Viallet 1980). (A 
section U is a map from the base space M4 to the bundle space P such that n- u ( p )  = p 
for p E M4.) 

In this context, a gauge transformation R : M4 + G can be regarded as acting in 
P = M4 x G such that R : ( p ,  g )  + ( p ,  gR). In particular the gauge transformation trans- 
forms a section U = ( p ,  g ( p ) )  into another cross section UR = ( p ,  g (p)R ( p ) )  (Trautmann 
1970). The components of the new connection form induced by the initial Lie-algebra 
valued functions (A,) on C T ~  are given in terms of the A ,  associated with U by 

A ; =  R A , R - ' - R ( R - ~ ) , ,  (1) 

where R E SU(2) and ( R - l ) , p  =d,(R-'). 
Sections are in gauge fields the substitutes of the more intuitive local frames of 

reference of gravitation. They are elements of the bundle space and as one of the 
constituents of the bundle P, the group G, reflects an internal symmetry of the theory 
the whole P (and therefore any section of P) does not have an intuitive space-time 
representation. 

In the next section we shall determine a cross section uR such that A :  will be the 
closest possible to a pure gauge as it can be, taking into account the existence of 
isoscalars and external sources. This cross section of the principal bundle is locally 
blind. Then, in $ 3 we apply the blind section to find a condition for nearly decoupled 
source equations. Thereafter in Q 4 it is analysed whether uniform and Wang-Yang 
types of gauge fields satisfy the decoupling conditions previously found and finally we 
discuss the results. 

2. Determination of the blind gauge 

As fermions do not have relevance in the arguments presented here it will be simpler to 
consider the gauge system defined by the action 

( 2 )  

where the Lie-algebra valued connections A ,  = AZX, and field strength f , , (A)  = f : x b  

have respective isocomponents A ;  and fiY in a base of antisymmetric generators X ,  of 
the simple group G = SU(2) 

[xa, x b l =  CabcXc x, = -x:. (3) 

The structure constants Cabc of G are fully antisymmetric ( c a b c ( s u ( 2 ) )  = -&abc ) .  

Real Higgs scalars 4i transform according to a representation of the group G which, in 
general, may be reducible, defined by real antisymmetric generators Y,  

Y ,  = - Y a .  

The potential V ( 4 )  is a quartic gauge-invariant polynomial, as for instance in 
Hagiwara and Ovrut (1979), the covariant derivative for scalars is given by (D,#J)~ = 
d,dj +A",,,4, and the field strengthf,, = d,A, -&A, -[AY, A, ] .  Consistency of the 
system constrains the external current to be conserved D,jrt 3 d, j ,  - [ j , ,  A,] = 0. 

(4) 
T 

[ y a ,  y b ]  = Cabc y a  
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Independent variations of (A,, 4i) in the action ( 2 )  yield the propagation equations 

where ( j :)" = (D,q5)*Yad. 
It will be useful to split scalars in terms of some constant field U and the shifted scalar 

4 : 4 = v + 6. (This decomposition will achieve relevance after spontaneously breaking 
the symmetry, once v is identified with the vacuum.) 

In order to determine the blind gauge, let us take a point p E M4 and a neighbour- 
hood U, of this point. Flat coordinates x(q) of any point q E U, are determined by 
x (4 1 = x ( p 1 + Y, I Y I << 1. 

~ ( x + y ) ~ e x p ( - u " ( x + y ) ~ , ) =  C (n!)-l(-l)n(uulXal).  . . ( u " = ~ ~ , ) ( x + y ) .  

The gauge transformation we are looking for can be expressed as a power series: 
m 

(6) 
n=O 

Once ua(x + y )  is fixed, R(x + y )  will be determined and the initial set of fields 
(A,, 4 = v + 6) can be transformed to their new representation (B,, $ = w + 4) by their 
respective transformation laws 

B, ( X  + y ) = RAJ? - R ( R  -I),@ 

$(x + y )  = exp(-u"(x + y)Y,)~$(x + y )  = S(R)4 .  

(7a) 

(7b) 

Our procedure consists in determining the set of functions U"(X + y )  by the whole set 

We start assigning u ( p )  = u"(p)X,  (in the following we shall omit internal indices) 
of its derivatives u , ~ . . , , ~  at the starting point p .  

by setting 

u ( p )  = 0. (8) 

We then impose B, (p )  = 0. According to equations (6) and ( 7 a )  we must have 

U , ( P )  = & ( P I .  (9) 

The second derivatives of U appear in the transformation law of d,A, which arises 
from equation (7a) 

d , B u ( p )  = d,A,(p) - U&u(P)+2-1[Au, A,I(p). (loa) 

If we assign to u w y ( p )  the value 

u,u(p )  = 2-'(a,Av + a A , ) ( p )  - 2-25(uT,  Ya6)(P)%u (lob) 

is an arbitrary real number, the first derivatives of the potentials in the new where 
representation will take the value 

d,B,(p) = 2 - 1 f , u ( p ) + 2 - 2 5 ( u T ,  Y"6).lr,u. (11) 

Notice that the choice (lob) for the second derivatives of the Lie-valued parameter 
U gives a value for the new first derivatives d,B,(p) such that: ( a )  d,B,(p)= 
t(vTYa&) = l(wTYa$),  the new representation is in t'Hooft'sgauge at the point ( p )  and 
(b) the object a,B,(p) has a vanishing symmetric traceless part. This condition ( b )  is the 
most vanishing condition one may impose on d,B,(p) consistent with the former 
condition (a ) .  
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The idea is to proceed in this way, at each step obtaining the ‘good’ value of 
~ ~ ~ . , . , ~ ( p )  such that the value of ~ , l , , , , n B y ( p )  they consequently define satisfies, at any 
stage, the corresponding generalisations of the previous conditions ( a )  and (b) .  

In the next step currents begin to appear in the results. Taking two derivatives of 
equation (7a) one obtains the transformation law for the second derivatives of the 
gauge potentials at the point p .  

1 
a,,,,B,(p) = ~,l,,AV(P) - 4 . L l C L Z b ( P )  + 2 -  [A(,, 4 L l , Z ) I ( P )  

+ [ac,,,Ai.i, A, , )I(P)  + ~ - ‘ A ( , A , A ~ ) ( P )  -A( , ,AIA,)(P)  (12a) 

where A(,,  U,,,,) =A,u,,,,, +A,,,u,,, + A , , U ~ , ~ .  In general curved brackets on the 
indices indicate minimal symmetrisation. 

~ , ~ ~ ~ ~ ( p )  = 2-  [A(, ,  u,~ ,~) I+  3 - 1 ~ ( , 1 , , 2 A ~ ) + 3 - 1 [ ~ ( ~ 1 ~ ~ 2 ,  A,)I--6-177(K1F2Sv) 

It is convenient to assign to ~ , ~ , ~ , , ( p )  the value 

( 1 2 b )  1 

Introduction of u,,,,,,,(p) into equation ( 1 2 a )  gives for the second derivatives of the 
transformed gauge field B, 

This is the first derivative at the point p of t’Hooft‘s gauge condition, which is exactly 
the statement of condition ( a )  at the level of second derivatives. 

Again, note the symmetric traceless part a~ , l , 2BY) (p )  of the object 8,,,,B,(p). This 
is the most vanishing condition one may impose on a,,,,B,(p) together with simul- 
taneously requiring the new field to be in t’Hooft’s gauge. (Observe that the vacuum w, 
the transform 21 as in equation (7b)  in general will not be a constant.) 

This procedure can be extended to define any finite derivative ~ , , , , , , ~ , ( p )  of the 
parameter U fixing the gauge transformation R = exp(-U). For instance the third 
derivatives of the transformed field will have the value 

(14a) -1 - 1  1 
aW1LL2,3BV(p) = 2 - 4 D ( , 1 D p 2 f & 3 ) V  + 2  7 7 ( I . 1 1 ” 2 ( ~ S 1 1 3 Y ) - 8 r 1 1 1 3 u ) S a a . )  

where 

(14b) 

These values come out after having set in the transformation law of the third-order 

= 4-1a(,1,LZ,3AY)-~-16-177(,1~z(~~~3Y)-$77113Y~~a.a) + 2-’[A(,, ~,1,2,3)1 

2 
S Y l , Z ( P )  = - 2 -  QJ,d + 2-111~(,1D,2,(~yd;)  - [U,,,,, (uTY&lI. 

partial derivatives of the gauge potential 
3 

+2-21[(21yd), U ( w 2 ~ 3 1 7 7 , 1 v )  - 6 - l [ [ U ( c ~ 2 1 * 3 1  A(vlA~l)) l*  (14C) 
It can be checked that d,,,,,,B,(p) as given in equation (14a) satisfies requirements (a) 
and ( b ) :  in fact d,l,2J3,,(p) = 2-14W(,1D,21(uY&) = lavI , , (wYJ) ,  which are the second 
derivatives of t’Hooft’s gauge at p ,  and the symmetric traceless part of the third-order 
derivatives of the new gauge potential di,l,2,3BY)(p) vanish at p too. 
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3. Condition for nearly decoupled field equations 

In the new gauge defined by R equations (5) are ( j f  = Rj,R-’) 

-OB, +awUBu +[B,, a&, + f u I L ( ~ ) l - [ ~ , ,  a V ~ ” 1  =jE. (15) 

These equations hold in a generic point q E U, whose coordinates x ( q )  are in the 
vicinity of x ( p ) ,  x ( 4 )  = x ( p )  + y, I y I << 1. 

Therefore OB,(q), a,B,(q), fu, ( B ) ( q ) ,  B,(q) can be infinitesimally expanded to any 
order in y in the neighbourhood U,, in terms of the whole set of derivatives 
{a,,.,.,nBy(p)l calculated at p .  

Expanding up to the second order in y equation (15) becomes 

-OB,(q)+3 x2-2~”{[f,*(B),f,*(B)1+[f,”(B), * l l ( ~ )  
= j E ( q )  - D , ’ l I r ( P )  - 2-’5y u ( ~ d x 4 ~ ) ( p )  + O(Y (16) 

where W-(V~Y“$)X , .  
One observes two things. The first is the appearance of an effective longitudinal 

current of the order of D,q due to the gauge condition we have set a,B,(q)= 
I ( w T Y $ )  = l W B ( q )  in the whole neighbourhood U,. 

The second consists in the presence of first-order terms, of a clear non-abelian 
origin. They are proportional to the [-dependent, gauge-invariant, antisymmetric 
Lie-valued element: 

W F V  = f [ f + w  ‘PI [f,A, fvA1 .  (17) 

It is clear from equation (16) that in some way WKLV is a measure of how tight is the 
non-abelian character of the field. The vanishing of Y,,, for instance, gives rise to a 
propagation equation (16) qualitatively closer to d dim G Maxwell uncoupled fields 
than any other set of gauge fields. It is then worth investigating the implications of 
vanishing ‘gyroscopicity’ W F U  (at least in the simpler case where Higgs scalars do not 
appear). 

In the absence of scalars the vanishing of W,, reduces to 

(’$ = 0) [fp,A, f v h  1 = 0. (18) 

In the Lorentz section ( T , ~  = (-+++)) of the physical space, introducing the electric 
and magnetic components of the field strength ei =foi and bi = 2-’eilmfim these equa- 
tions can be written 

[e , ,  e,l-[bl,b,l=O=[el,  b,I-[e,, bll. (19) 

In general, self-dual or anti-self-dual fields (e, = 4ib,) will not satisfy these six relations 
which in such cases reduce to the three equations [e, ,  e,] = 0. 

It is straightforward to see that the less degenerate solutions of equations (19) have 
the isospace structure (for G = SU(2), e, = ePX,, b, = b,aX,) 
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4. Uniform fields and Wang-Yang types of gauge fields 

Gauge fields have been classified by Wang and Yang (1978) using the complex matrix 
Aab = K a b  +iJRb, Kab = e a e b  -babb,  Jab = e a b b  +ebba. In particular gauge fields like 
those given by equations (20)  give rise to a degenerate classifying matrix A: 

Then one strongly suspects that non-gyroscopic gauge fields will belong to case 2 of 

It is obvious that this indeed is the case. In fact the set 
the Wang-Yang scheme (which corresponds to A having rank 2).  

has, in general, a non-vanishing second-rank determinant 

A 2 =  AllA22-A:2 

= (a2+b:+c:){( l  + y2)( l  -S2)eT+is2(bl+ycl)el} 

-2(b l+ ycl) S e l  - i (b l+  ycl)e:(l + y2 )62  # 0. (23) 

The converse is not true. Taking the canonical realisation for case 2 of Wang and 
Yang (1978) it is easy to check that not necessarily will any case 2 gauge field have 
vanishing gyroscopicity. 

One may also wonder whether the vanishing of qwv could be related to the fields 
being uniform, in the sense of Brown and Weissberger (1979). 

There is no connection between uniformity and non-gyroscopicity. For instance, for 
a uniform gauge field A: such that Yab =A,&AbcL is of rank 1 with eigenvalues 
A 2  = A 3  = 0, A > 0, equations (1 8) are satisfied while for a uniform gauge field producing 
a matrix Yab of rank 3 with AI < 0, A 2  > 0 ,  A3  > 0 one has that [e2b3]-[b2e3] # 0. This 
shows the existence of uniform gauge fields having a gyroscopic character. 

To conclude let us also mention that collinear gauge fields, i.e. fields of the form 
A,  = a, (x)A,  where a& is a four-vector and A a matrix, will also satisfy equation (18). 
Fields of this sort appear when analysing the gauge copies problem (Deser and Wilczek 
1976, Bollini et a1 1979). 

2 2 2  

5. Conclusions 

It has been shown how to construct a gauge transformation in each neighbourhood of 
the base space M4 of a principal fibre bundle (with structure group G) such that the 
associated local cross section is the nearest possible to a pure gauge element. This is in 
close analogy with the locally inertial frames of gravity. These cross sections can not 
locally see the gauge potential. They are locally blind in each finite point of M4. 

As one might have expected, scalars and consistent external currents increase the 
roughness of the blind section which is always consistent with t'Hooft's gauge condition. 
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In the absence of scalars and external sources the symmetric components of the whole 
set of partial derivatives ~ ~ ~ l , , , ~ n B v ~ (  p )  vanish while, in their presence, only the traceless 
part of this object becomes null. 

Looking at the propagation equations in the blind section a gauge-invariant 
condition of quasi-decoupling (non-gyroscopicity) emerged naturally. It is shown that 
pure gauge fields of this type (no scalars) are a little bit degenerate; they belong to the 
case 2 of the Wang-Yang classification which is strictly larger than the class of 
non-gyroscopic fields. 

In the Euclidean section instantons will have, in general, a gyroscopic character. 
We have also examined uniform gauge fields. It turned out that they can be either 

truly gyroscopic or have vanishing gyroscopicity as the above explicit examples show. 
Regarding possible applications of these results, it is clear that they constitute a 

possible approximation scheme to short-distance behaviour, and this, in momentum 
space, is equivalent to high-energy processes in the quanta associated with the gauge 
potentials (gluons for instance). Let us mention that a further point which will complete 
the analysis carried out here, interesting in its own right, is that of the long-distance 
(asymptotic) behaviour of the gauge system in the vicinity of infinity which might 
contribute to the understanding of the difficult low-energy behaviour of gauge vector 
fields. 
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